Sunday, April 26, 2020
Lasers Essays - Laser Science, Gas Lasers, Laser, Photonics
  Lasers     The light from lasers differs from ordinary light in several important aspects. Ordinary light   from a light bulb travels randomly in all directions (unless the bulb is equipped with an integral   reflector that directs the light). The light is thus incoherent. Even when incoherent light is   directed with a reflector, it still spreads rapidly.   The light from a laser is temporary and spatially coherent. This means that all of the   wave-fronts of light are lined up in time and space (see Diagrams). The waves of light go up and   down in sync, and travel in the same direction.   Coherent light spreads less than other types of light. For example the beam of a tightly focused   flashlight would spread between 2 degrees and 5 degrees over a 3 meter (10 ft) throw distance.   The sides of a laser beam are almost parallel but the light still spreads slightly. This spread is   called divergence and is measured in milliradians (mrad). If a laser has a specified divergence   of 5 mrad, then in the above example with a 3 meter throw (10 ft), a laser beam will spread only   about 3/20 of a degree.       This is a simplified explanation of the process of stimulated emission. If you are interested in   more detailed information about this subject, you should consult a science or physics book.   Let us take the HeNe laser as an example. If a glass tube were filled with a mixture of helium   and neon gas; and an electrical current were applied to the electrodes, the gas would emit light   energy. This glowing gas is referred to as a plasma.   You are already familiar with this glowing gas in the form of the neon signs you see at your   favourite restaurants. We now have a neon tube but not a laser so let's take a closer look at   how the laser's light is produced.   Under normal conditions the electrons in a gas atom orbit at a fixed distance and pattern around   the nucleus; this is the ground state or most stable configuration of the atom. When an electrical   charge travels through the gas in the tube (energy is pumped into the gas), it excites or   stimulates the atoms. Some of the electrons absorb this energy by jumping up to the next stable   orbit.   This configuration is unstable. The electron wants to return to its regular orbit, the ground state.   As the excited (stimulated) atoms in the gas relax back to the ground state, some of the energy   that excited the electron(s) is emitted (released) in the form of random photons of light   This is called spontaneous emission. This is how a neon sign (or other gas discharge light such   as a mercury vapour lamp) produces light. The photons travel rapidly in all directions. They are   visible along the length of the neon tube or radiate outward from the light source. The   spontaneous emission is not enough to cause lasing action.   Lasers are very different from neon tubes in that they amplify the glowing effect via stimulated   emission. Stimulated emission can only occur when there is a "population inversion" in the   energy state of the lasing medium (in this case gas).   Laser tubes are designed in a long narrow configuration with a central bore. At either end of the   bore there are mirrors. These mirrors must be held in precise alignment for the laser to work   properly.   In most HeNe lasers the mirrors are permanently attached or sealed onto the ends of the tube   -- sometimes referred to as hard seal technology. In higher power lasers the mirrors are usually   not mounted on the ends of the tube itself, but on an external resonator that forms part of the   laser frame. This allows for changing the mirror optics or adding a littrow prism if a specific   output wavelength (colour) is required. The mirrors must be perfectly aligned so that the   emissions from the gas in the tube will be amplified.     Some of the photons of light randomly emitted by the relaxing gas atoms will be travelling   parallel to the bore (centre) of the laser tube. These photons will strike the mirror at the end of   the tube and will be reflected back through    
Subscribe to:
Comments (Atom)
 
